
c '

TASK ASSIGNMENT HEURISTICS FOR PARALLEL A N D
DISTRIBUTED CFD APPLICATIONS

N. LOPEZ-BENITEZ', M. J. DJOMEHRIt, AND R. BISWASJ

Abstract. This paper proposes a task graph (TG) model to represent a single discrete step
of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is
then used to not only balance the computational workload across the overset grids but also t o
reduce inter-grid communication costs. We have developed a set of task assignment heuristics based
on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest
task first (STF) and the largest task first (LTF), are first presented. They are then systematically

costs. To predict the performance of the proposed task assignment heuristics, extensive performance
evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points
in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid
points is also used as a test case.

mhr3?_ce! +>, +egr;"2ti"x +e stll.73 cf Frccns:2g z-its & :'.e :7&rp:cpsz: ~ : : . ~ * ~ ~ . : & ~ c ~

Key words. Overset grids, task graphs, performance prediction, parallel processing, high per-
formance computing.

AMS subject classifications. 05C90, 68U01, 65Y05

1. Introduction. The availability of massively parallel computational resources
poses a challenge to the development of efficient algorithms for high-performance sci-
entific computing. A possible application is the high-fidelity solution of Navier-Stokes
equations to predict aerodynamic flow characteristics around complex aerospace con-
figurations. High-end supercomputing is required to reduce the turn-around time of
such computational fluid dynamics (CFD) simulations. Multiple processors may be
either tightly coupled or geographically separated and networked into a single virtual
supercomputer. Seamless access to distributed resources is enabled by metacomput-
ing toolkits such as Globus [7,8]. Due to the inherent cost effectiveness of aggregated
computing, the distributed approach has attracted significant interest and become a
research priority in recent years. It has also been the main driver behind the devel-
opment of NASA's Information Power Grid (IPG) [9].

To handle complex geometric configurations, NASA's CFD production code called
OVERFLOW [3] decomposes the flow domain into a union of overset structured grids
(also referred to as zones), each of which covers a relatively simple region of the
domain. In the parallel implementation, a bin-packing strategy is used to cluster
individual grids into groups, where the number of groups is equal to the number of
processors. To avoid poor volumetric load balance, the larger grids can be further
partitioned into subgrids. As a result, the number of grids and subgrids (collectively
known as tasks in this paper) easily exceed the total number of available processors.
Overset grid CFD schemes proceed by computing numerical solutions for each task
and then updating boundary data across overlapping grids, generating the bulk of
information transferred between the processors hosting the tasks. Effective task as-
signment schemes must therefore not only balance the computations but also reduce

*Department of Computer Science, Texas Tech University, Lubbock, TX 79409-3104

Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

$NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffett Field, CA

(nlbQcs.ttu.edu).

(djomehriQnas .nasa.gov).

94035-1000 (Rupak.BiswasQnasa. gov).

1

N Lopez-Benitez, M J DjOmehn, and R Biswas
- __ - -

interprocessor communication costs.
Several partitioning schemes for load balancing exist [22], but most are static in

nature and not suitable for dynamic reconfigurations. The task graph (TG) model
proposed in this paper is used to represent a discrete step of the overset grid CFD
simulation process. It is thus able to handle dynamic load balancing requirements by
modifylng the TG from one step to the next as necessary. The model also enables us to
explore the feasibility of several allocation schemes so that the constraints inherent in
the underlying applications are observed. The heuristics developed are based on two
primitive assignments: smallest task first (STF) and largest task first (LTF). These
assignments are subsequently enhanced by the systematic integration of the status
of t h e proceqsing iinits nnrl t h p interprocessor com~minication cost?. To evaluate
and compare these proposed heuristics, a synthetic TG is generated where tasks are
defined in terms of the number of grid points in predetermined overlapping grids. A
TG derived from a realistic problem with eight million grid points is also used as a
test case.

Section 2 gives a brief
overview of the OVERFLOW CFD code and cites some related work. Section 3
describes the TG representation of a discrete step in OVERFLOW, while Section 4
presents our proposed task assignment heuristics. Section 5 explains how synthetic
TGs are generated for the purpose of evaluating the heuristics. Detailed performance
results for synthetic and real TGs are presented and discussed in Section 6. Finally,
Section 7 concludes the paper with a summary and some key observations.

The remainder of this paper is organized as follows.

2. Preliminaries. OVERFLOW [3], NASA’s high-fidelity overset grid CFD pro-
duction code, owes its popularity within the aerodynamics community due to its
ability to handle complex configurations. These designs typically consist of multiple
geometric components, where individual body-fitted grids can be constructed easily ’

about each component The grids are either attached to the aerodynamics configu-
ration (near-body) or detached (off-body). The union of all near- and off-body grids
covers the entire computational domain. In this work, we use a special version of
OVERFLOW called OVERFLOW-D [16].

Both OVERFLOW and OVERFLOW-D use a Reynolds-averaged Navier-Stokes
solver, augmented with a number of turbulence models. However, unlike OVERFLOW
which is primarily meant for static grid systems, OVERFLOW-D is explicitIy designed
to simplify the modeling of components in relative motion (dynamic grid systems).
At each time step, the flow equations are solved independently on each zone in a
sequential manner. Overlapping boundary inter-grid data is updated from previous
solutions prior so the start of the current time step using a Chimera interpolation
technique [23]. OVERFLOW-D uses finite differences in space, with a variety of

Parallelization of OVERFLOW-D has been developed around its multi-block fea-
ture which offers a natural coarse-grained parallelism based on the message passing
programming model. The MPI library is used to communicate the overlapping bound-
ary data across processes. To facilitate parallel execution, a grouping strategy is used
to assign each grid to an MPI process; however, parallel efficiency of the overset ap-
proach depends critically on how this grouping is performed. A number of simple and
sophisticated grouping strategies for overset applications are discussed in [5].

The Chimera interpolation procedure [23] determines the proper connectivity of
the individual grids. Adjacent grids are expected to have at least a one-cell (single
fringe) overlap to ensure the continuity of the solutions: for higher-order accuracy and

I
I implicit/explicit time stepping.

Task Assignment Heuristics for CFD 3

to retain certain physical features in the solution, a double fringe overlap is sometimes
used. A program named Domain Connectivity Function (DCF) [17] computes the
inter-grid donor points that have to be supplied to other grids. The DCF procedure
is incorporated into the OVERFLOW-D code and fully coupled with the flow solver.
All boundary exchanges are conducted at the beginning of every time step based on
the interpolatory updates from the previous time step. For dynamic grid systems,
DCF has to be invoked at every time step to create new inter-grid boundary data.

In this work, a task graph (TG) is used to represent the interaction between the
overset grids. Each grid is represented by a node in the TG, and a pair of overlapping
grids is indicated by an edge between the corresponding nodes. Formally, a TG
G(V. E) consists of a set of vertices v = {7iz)> 1; 2 1 to represent tasks, and a set
of edges E = {ez}, i 2 1 to represent precedence constraints. If the execution time
of each task is constant, calculating the job completion time is straightforward when
assuming an unrestricted number of processing units. However, in a networked system,
a task’s execution time depends on the characteristics of the processor to which it
is mapped while communication times depend on the latency and bandwidth of the
interconnect. Thus, estimating and minimizing the total job completion time becomes
an optimization problem that involves the proper scheduling of tasks to processors.
An optimal non-preemptive schedule of independent tasks to be executed on a two-
processor system is NP-complete [lo]. However, linear and polynomial mapping times
can be achieved if the structure of the TG is restricted; such is the case for the
two-level directed acyclic graphs reported in [15]. To reduce complexity and make
the procedure feasible for dynamically load balancing OVERFLOW-D TGs on large
numbers of processors at the risk of obtaining sub-optimal results, novel scheduling
heuristics are developed and presented in this paper.

A solution technique for series-parallel TGs is reported in [20, 211 as part of a
software package called SHARPE. Other related work combines TGs and queueing
theory; an analytical approach is presented in [l] based on the solution of synchronous
queueing networks. Also, [24] reports the use of a hierarchical approach that com-
bines Markov models and TGs. In [14], this combination is applied to the perfor-
mance prediction of TGs executing in shared-memory multiprocessor environments.
Stochastic Petri Nets (SPN) are also used to represent parallel programs. In [2], a
set of translation rules maps language constructs into SPN-based segments that are
then used for automatic translation of parallel programs. Simple SPN-based models
can also capture precedence constraints and the restrictions imposed by assignment
heuristics [12, 131. The use of SPNs to represent TGs extends the analysis to ob-
tain probability distributions of completion times as well as average execution times
for different heuristics and computational configurations. Another advantage is that
system scalability can be predicted as additional processing units become available.

3. Task Graph Representation. The use of a task graph (TG) to represent
overset grid CFD simulations makes the performance prediction of several assignment
heuristics possible. Task allocation heuristics attempt to minimize total job execution
time based on criteria such as individual task run times and the volume of data
exchanged.

Let 2 = {&, 22,. . . , Zm} define a collection of m zones in the CFD problem.
A large zone 2, can be further subdivided into a fixed number of IC , subzones, such
that 2, = {Zzl, Zzz,. . . , Z z k , } . Note that a partitioned 2, consists of IC , > 1 non-
overlapping sets of grid points [6]. We use the term PZ to refer to these partitioned
zones. In the presence of PZs, the heuristics must also consider constraints such

4 N. Lopez-Benitez, M. J. Djomehri, and R. Biswas

FIG. 3.1. Task graph representation of a single iteration of an overset grid CFD application

as pre-assignments to different processors to guarantee a parallel execution of the
corresponding tasks. PZs are indicated by the dashed oval in Fig. 3.1 which illustrates
a TG representation of a single iteration of the CFD problem. The set Z is clearly
identified in the TG. It is convenient to map Z into a linear set T of q tasks T, with no
dependencies such that all tasks become identified with a single index. For exampIe,
t h e s e t T = {T~,{T~,T~,T~},(T~,T~,T~,T~},TS, . . . , T,} identifiesaset Zwithzones
Z1 = T I , Z2 = {T2,T3,T4}, Z3 = {T5,T6,T7,Ta}, Z4 = Ts, and so on, including
2, = T,. Note that, in this case, 2 2 and Z3 are PZs containing three and four
subzones, respectively. Dummy tasks D, with zero execution times represent tasks
receiving data needed for the next iteration of the computational process. An iteration
starts and ends at nodes S and E , respectively. The arcs represent interactions
between tasks; weights can be associated to these arcs to represent the volume of
data transferred.

4. Task Assignment Heuristics. In this section, we describe our task as-
signment heuristics. To guarantee parallel execution, all tasks corresponding to PZs
must be pre-assigned to different processors and coordinated to begin execution si-
multaneously. This is an important constraint enforced by each heuristic. Once the
pre-assignment of PZs is made, the remaining tasks are allocated based on the as-
signment criteria. For q tasks and n processors, several tasks will end up on the same
processor since q >> n. All tasks are executed by the processors in the order in which
they are assigned into the n groups: G,, j = 1,2,. . . , n.

Let E(G,) denote the computation time of all the tasks in group Gj (Le. assigned
to processor P,), and let X, denote the computation time of task T,. Then,

E (G j) = Xi
TiEGj

and the execution time E of a single iteration is

Task Assignment Heuristics for CFD 5

E = max{E(Gj)}
3

(4 4

Assuming data generated by the tasks in Gj is routed in a serial fashion to other
tasks, the transfer cost C(Gj) of all tasks in Gj is

(4.3)

-.I- *yI1~'= ,.-?. & is the coat of seii&iig && froiii t*k Ti to tak Tk. Tlie cuil~iilul,~ca~~aiil c"bi
Cik is assumed zero if both Ti and Tk are assigned to the same processor. Instead, if
Ti and T k are assigned to processors P, and P,, respectively, it is estimated [4] as

where L,, and B,, are the latency and bandwidth between P, and P,, Vjk is the
volume of data generated by Ti with T k as destination, and aij is a binary entry of an
assignment matrix AQn. The entry aij is set to one if Ti is assigned to Pj; otherwise, it
is zero. An indicator function I (z) that returns unity if the argument x is true is used
to determine the values of aij. The specific form of I (s) depends on the assignment
heuristic. An independent model could also be used to obtain a better estimate of
the communication costs.

By combining Eqs. 4.1 and 4.3, the execution time E+ of a single iteration is
obtained as

E+ = mq{E(Gj) + C(Gj))
3

(4.5)

Note that Eq. 4.5 enhances Eq. 4.2 by including the interprocessor communication
overhead. Since this scheme separates computation and communication times, assign-
ment heuristics can be developed based only on task computaGon times followed by
estimated communication costs.

The following assumptions need to be highlighted at this point:
Each CFD iteration is synchronized across processors and cannot commence
execution until all data generated in the previous iteration is in place.
Processors may be idle while communication takes place. They could also be
idle as a result of the synchronization of iterations.
The total application execution time E is scaled such that E = aE. The term
cr is the number of iterations required to complete the entire CFD simulation.

Note that an upper bound of processor idle time IT can be obtained as

IT = E+ - min{E(Gj) + C(Gj)}

This is a global measure that could be useful as an objective function to be optimized
if idle times for each processor were used during the assignment process.

Another metric that could be used as a measure of the effectiveness of an assign-
ment is the load imbalance factor LIF:

3
(4.6)

I

J

6 N. Lopez-Benitez, M. J. Djomehri, and R. Biswas

(4.7)

For heuristics that do not consider communication costs, the term C(G,) is dropped
and E+ is replaced with E in Eq. 4.7 when calculating LIF .

Let us now describe our proposed task assignment heuristics. The first two are our
basic strategies and depend on whether the smallest or the largest tasks are assigned
first. The next four enhance these basic techniques by incorporating the status of the
processing units, in terms-of their minimum finish times or largest idle times. Finally,
the last four further integrate the interprocessor communication costs. The overall
relationship among the 10 heuristics is shown in Fig. 4.1. Note that the assignment
matrix Aqn is updated each time a task is allocated to a processor using the indicator
function I(z) as specified below for each heuristic.

I Processor j
: Status :

: Communication j
j costs I

FIG. 4.1. Overall relationship among our 10 proposed task assignment heuristics

4.1. Smallest Task First (STF). In this scheme, the smallest unassigned task
Ti is allocated to the next processor Pj selected from a list sorted in ascending order
of their index. The assignment is determined such that

(4.8) aij = I(Xi = mp{Xk})

where Xk’s are the execution times of all the unassigned tasks. In other words, tasks
are assigned in ascending order of their execution time to processors in round-robin

Task Assignment Heuristics for CFD 7

fashion. All tasks corresponding to a PZ are assigned first; in this case, they are
selected randomly within a single PZ set. If clustered processors are properly mapped
into this sorted list, then most PZs are likely to be assigned to clustered processors
and communication costs reduced accordingly.

4.2. Largest Task First (LTF). This heuristic is the inverse of STF and re-
ported in [19]. An assignment is determined as

(4.9) aij = I (X i = mkax{Xk})

Here: processor Pj i s 3 .ge . j~ the ~ e ~ t . prccesscr frcm 2 scrtod iz ~ c c p z & ~ u 0 n r d w -----
by index; however, the tasks are now sorted in descending order of their computation
times. As in STF, all tasks corresponding to a PZ are assigned first. Note that LTF
will give the same assignment as STF because it is merely a maxsort versus minsort
of the tasks.

4.3. STF with Minimum Finish Time (STF-MFT). The minimum accu-
mulated time k c j at processor Fj is combined with the STF criteria. Thus, task Ti
is assigned t o processor Pi such that

(4.10) aij = I(Acj = min{Xi} z + min{Acj})
f

In this scheme, the unassigned task Ti with the minimum computation time Xi is
allocated to the processor that becomes free in the shortest time. Note that STFMFT
will result in the same assignment as STF since the latter, by design, automatically
allocates the next task to the processor with the minimum finish time. This strategy
is a variation of the heuristic reported in [18].

4.4. LTF with Minimum Finish Time (LTFNFT). This scheme is a vari-
ation of Eq. 4.10 as the task with the maximum execution time is scheduled instead.
Hence,

(4.11) aij = I(Acj = m v { X i } + min{Acj})
1 3

This task assignment heuristic is similar to the bin-packing strategy described in [6] .
Note that LTF-based assignment heuristics should generally perform significantly bet-
ter than the corresponding STF-based strategies because the largest tasks are allo-
cated first.

4.5. STF with Largest Idle Time (STFLIT). This scheme is another al-
ternative that combines STF and the largest idle time of a processor. It is similar to
S T F N F T except that an upper bound of the idle time is determined by the max-
imum accumulated time. Let hj denote the current idle time of processor Pj with
respect to maxk{Ack}. Then,

(4.12) hj = max{dck} - Acj
k

Thus, initially all hj evaluate to zero and the first n tasks chosen randomly (assuming
they can execute in parallel) are assigned to the n processors. Thereafter, hj is selected

8 N. Lopez-Benitez, M. J. Djomehri, and R. Biswas

begin procedure STFLIT
1. Compute h, using Eq. 4.12 and sort in descending order
2. SeIect next task T, such that its X, is minimum
3. Assign T, to processor P, such that its h, is maximum
4. Update a,, accordingly
5. If (Azj = max,{h,} - min,{X,} < O), repeat from step 1
6. Else repeat from step 2

end procedure STF-LIT

FIG. 4 2 Assagnment procedure for the STF-LIT heurastzc

from a descending order list and X, from an ascending order list. The task T, with
the smallest X, is assigned to the processor with the largest h,. The assignment of
these remaining tasks is summarized in Fig. 4.2. Note that every time the h, list is
modified, it i s reordered again with an added sorting cost of O(n log n). The h, values
change depending on Azj = maxj{hj} - min,{X,}.

4.6. LTF with Largest Idle Time (LTF-LIT). This scheme is a variation of
STFLIT except that all computation times are now sorted in descending order.

4.7. STFXFT with Communication Costs (STFNFT-CC). We now
incorporate the interprocessor communication costs into the task assignment heuris-
tics. However, STF-LIT and LTFLIT are no longer considered because their perfor-
mance is similar to STFMFT and LTF-MFT, respectively. We first ignore the fact
that some destination tasks may not yet be allocated to processors and therefore the
communication cost must be estimated. The STF-MFT-CC strategy assigns non-PZ
tasks with minimum computation times and communication costs to processors with
the current minimum finish time. The assignment matrix is created as

aij = I(Acj = rnin{Xi 2 + Ci} + min{Acj})
j

(4.13)

Note that the only modification to the STF-MFT indicator function in Eq. 4.10 is that
a task is selected such that the sum of its computation and communication times is
minimum. This value is then added to the accumulated time of the selected processor.
The communication time for task Ti is obtained as Ci = X I , Gk, where the index k
identifies all destination tasks. A drawback of this scheme is that all destination
tasks are required to be already allocated. If this is not the case, the communication
cost is estimated by assuming constant latency L and bandwidth B , and then using
Eq. 4.4. Our implementation steps are shown in Fig. 4.3. The adjustments in step 3
are required because no communication costs are incurred if two interacting tasks are
assigned to the same processor.

4.8. LTF-MFT with Communication Costs (LTF-MFT-CC). Task as-
signments under this scheme are similar to those represented by Eq. 4.13 except that
they are now conducted with respect to the maximum value of (X, + C,):

aij = I(Acj = mV{Xi + Ci) + min{Acj})
j

(4.14)

Task Assignment Heuristics for CFD 9

begin procedure STF-MFT-CC
1. Sort tasks Ti in ascending order in terms of (Xi + Ci)
2. For each processor Pj, set Acj = 0
3. For each task Ti allocated to processor Pj

4. For each task allocated to processor Pj
Acj = Acj + Xi + Ci

4.1. If a destination task T k is assigned to the same processor Pj, do

4.2. If a predecessor task Th is assigned to the same processor Pj, do
ACj = Acj - Cik

Acj = Acj - chi
end procedure STF-MFT-CC

FIG. 4.3. Assignment procedure for the STF-MFT-CC heuristic

4.9. STFMFT wi th Actual Communication Costs (S T F M F T A C C) .
In this scheme, tasks are allocated to processors according to Eq. 4.10 and communi-
cation costs are calcu!ated o d y after predecessor 2nd destiEation tasks "re Zsigced.
Network latency and bandwidth depend on where the interacting tasks are actually
allocated. The addition of ~k whenever possible updates the processor accumulated
time that integrates communication costs at least partially. An outline of the imple-
mentation algorithm is shown in Fig. 4.4.

begin procedure STF-MFT-ACC
1. Sort tasks T, in ascending order in terms of X,
2. For each processor P,, set Ac, = 0
3. For each task T, in sorted list

3.1. Assign task T, to processor P, with minimum Ac,

3.2. For each task T, E R(T,) assigned to processor Pk # P,, do

3.3. For each task T d E D(T,) assigned to processor P, # P3, do

Ac, = Ac, + X,
Ac, = Ac, + czr

A h = A h + cdZ
end procedure STF-MFTACC

FIG 4 4 Assagnment procedure for the STF-MFT-ACC heurastac

As task T, is assigned, the set of tasks R(T,) receiving data from T, but assigned
to a different processor is updated. The accumulated time of the processor hosting
T, is also adjusted with the communication costs for all tasks in R(T,). Likewise,
the set of predecessor tasks D(T,) donating data to T, but assigned to a different
processor is updated. The accumulated time of all processors hosting tasks in D(T,)
is also updated. To illustrate how S T F X F T A C C operates, consider the simple TG
in Fig. 4.5 and the execution steps in Table 4.1 when assigning it to a two-processor
system.

4.10. L T F M F T wi th Actual Communication Costs (L T F M F T - A C C) .
The procedure given in Fig. 4.4 for S T F N F T A C C apply here except that the alloca-
tion follows Eq. 4.11 for which tasks are sorted in descending order of their computa-
tion times. Table 4.2 shows the execution steps when assigning the TG in Fig. 4.5 t o
a two processors. Notice that the workload is balanced much better than in Table 4.1.

10 N Lopez-Benitez, M J Djomehri, and R Biswas
__ - _____ __ - _ _ _

x2=

c2 1
= 1 4

FIG. 4.5. Task graph of a small overset gr id CFD application

TABLE 4.1
Execution trace of STF-MFT-ACC f o r the T G in Fig. 4 . 5

1. Sorted tasks T3,Tz,Ti,T4
2.
3.1. T3 -i Pi

3.2. R(T3) = 0
3.3. D(T3) = 0
3.1. T2 + P2

3.2. R(T2) = (T3)

3.3. D(T2) = (T3)

Acl = A c ~ = 0

A s = 0 t 30 = 30

A c ~ = 0 + 40 = 40

A c ~ = 40 + 2 = 42

Acl = 30 + 4 = 34

3.1. Ti -i Pi

3.2. R(T1) = (T2)

3.3. D(T1) = (7 '2)

3.1. T4 -+ P2

3.2. R(T4) = {Ti, T3)

3.3. D(T4) = (Tl,T3)

Acl = 34 + 50 = 84

Acl = 84 + 2 = 86

A c ~ = 42 + 1 = 43

A c ~ = 43 + 60 = 103

A c ~ = 103 + 3 + 4 = 110

A c ~ = 8 6 + 1 + 3 = 9 O

TABLE 4.2
Execution trace of LTF-MFT-ACC f o r the T G in Fig. 4 . 5

1. Sorted tasks T4,Tl,T2,T3
2.
3.1. T4 -+ Pi

3.2. R(T4) = 0
3.3. D(T4) = 0
3.1. Ti + P2

3.2. R(T1) = (T4)

3.3. D(T1) = (T4)

Acl = A c ~ = 0

Acl = 0 t 60 = 60

A c ~ = 0 t 50 = 50

A c ~ = 50+ 1 = 51

A c ~ = 60 + 3 = 63

3.1. T2 -+ P2

3.2. R(T2) = (T4)

3.3. D(T2) = (T4)

3.1. T3 - + P i

3.2. R(T3) = (T2,Td)

3.3. D(T3) = (T2,Td)

A c ~ = 51 + 40 = 91

A c ~ = 91 + 3 = 94

A c ~ = 63 + 3 = 66

Aci = 66 + 30 = 96

Acl = 96 + 4 + 3 = 103

A c ~ = 94 + 2 + 4 = 100

Task Assignment Heuristics for CFD 11

5. Synthet ic Task Graph Generation. All of our proposed heuristics can be
evaluated with synthetic TGs. Given the total number of grid points n g p and the
number of tasks q, the synthetic TG generation process consists of three steps. The
first step is specifying the number of grid points for each zone Zi. The procedure
GEN-GMDS outlined in Fig. 5.1 accomplishes this goal. Basically, each Zi is initially
allocated a random number of grid points less than Lngp/qJ. If the total number of
grid points for all q zones is less than ngp, the remaining grid points are randomly
added to one of the zones.

begin procedure GEN-GRIDS
sum = 0
for (i = 1 to i = q)

Generate a random number z E (1, ngp lq}
Allocate x grid points to Zi
sum = sum + x

end for
if (sum < ngp)

Generate a random index i E (1, q}
Allocate (ngp - sum) additional grid points to 2,

end if
end procedure GEN-GRIDS

FIG. 5.1. Procedure for generating zones containing daflerent numbers of grid points

A second procedure called GEN-TG, outlined in Fig. 5.2, generates the topology
of the TG with tasks defined by zones generated by GEN-GRIDS. The number of
overlapping zones defines a window of size w = r x q x o where r is a random number
between 0 and 1, and o is a user-supplied parameter that specifies the maximum
percentage of q zones that can overlap. Each zone Zi may overlap with w / 2 zones
below and above its index i.

.

begin procedure GEN-TG
for (i = 1 to i = q)

Generate a random number T E (0,l)
w = int (0 x r x q)
count = 0
for (j = 1 to j = w / 2)

l = i - j
i f (l < l) l = l + q
if (count + + = w) break
Overlap zone i with zone I
u = i + j
i f (u > q) u = u - q
Overlap zone i with zone u

end for

end procedure GEN-TG
end for

FIG. 5 .2 . Procedure for generating the topology of a synthetic TG

Finally, a third procedure called COMM-VOL generates the volume of data ex-

12 N. Lopez-Benitez, M. J. Djomehri, and R. Biswas

begin procedure COMM-VOL
for (i = 1 to i = q)

m = number of overlapping zones for Zi
for (j = 1 to j = m)

Obtain index k of j-th overlapping zone
&k TC x XI,

end for
end for

end procedure COMM-VOL

FIG. 5.3. Procedure for generating communication volume between overlapping zones

changed between interacting tasks in terms of the number of overlapping grid points.
The outline of this procedure is shown in Fig. 5.3. This program reads a file (gener-
ated by GEN-GFLIDS) containing the number of grid points Xi for each task and a
file (generated by GEN-TG) containing the indices of overlapping tasks. The com-
munication vo!urr;e between tssb T, and T’ is set ,cis q., = TC x X., where TC is the
fraction of grid points that are in the overlap region.

6. Performance Results. A simple interface called Evaluate Assignment Heu-
ristic (EVAH) has been implemented to compare and contrast the various heuristics.
We first generated a synthetic TG containing 128 zones and 16 million grid points. The
other parameters are set as follows: computation time per grid point xpg = 15 pec ,
fraction of grid points in overlap region TC = 0.5, network latency L = 13 psec, and
network bandwidth B = 37.3 Mbytes/sec. Latency and bandwidth are required to
estimate the cost of data exchange between overlapping zones. The communication
volume is calculated in terms of the number of overlapping grid points multiplied by
a factor equal to the number of bytes per grid point required to exchange data. In our
case, this factor is assumed to be 200 bytes. All evaluations are performed assuming
the number of processors to be between 2 and 128.

Two performance metrics are reported: load imbalance factor (L I F) and speedup
(S) . LIF is calculated using Eq. 4.7, while S is computed as S = (ngp x xpg)/E+,
where E+ is given by Eq. 4.5. Fig. 6.1 shows the LIF for all the heuristics based on
STF, while Fig. 6.2 shows results for those based on LTF. Results for STFLIT and
LTFLIT are not presented because they are almost identical to those for STF-MFT
and LTF-MFT, respectively. Both figures show results for the baseline STF and LTF
heuristics for sake of comparison. While the general trends are similar, improvements
are more significant for the LTF-based heuristics. The best overall results are obtained
with LTFMFT-CC. This is expected for homogeneous processing systems. For het-
erogeneous environments, as in computational grids, the LTF-MFT-ACC heuristic
should do significantly better.

Performance results for speedup S for the STF- and LTF-based heuristics are
shown in Figs. 6.3 and 6.4. Again, the best results are achieved by LTF-MFT-CC.
If the underIying system architecture possesses uniform interprocessor communica-
tion characteristics, the obvious choice is LTF-MFT-CC. Otherwise, one should use
LTF-MFT-ACC which allows only actual communication costs to influence the task
assignment scheme.

Notice that the performance metrics are identical for all heuristics when the num-
ber of processors n is 1 or 128. When n = 1, we are simulating sequential execution
of the TG; hence, task assignment does not have any effect. When n = 128, each

Task Assignment Heuristics for CFD n-- -

1

STF
0.9 STF-MFT

--+- STF-MFT-CC
---+%-- S T L N F - A C C

0.8

"4 7 0.3 I l , , l , , , , , , , , , , , , ~ : I , , , , , : I , , I
16 32 48 64 80 96 112 128

Num ber of Processors

FIG. 6.1. Load imbalance factors for STF-based heuristics on synthetic T G

16 32 48 64 80 96 112 1
Number of Processors

FIG. 6.2. Load imbalance factors for LTF-based heuristics on synthetic TG

processor executes exactly one zone since our synthetic TG has 128 zones. Thus, all
assignment heuristics return the same result. However, the actual trend between 2
and 127 processors depends on the assignment scheme and the TG.

We now present results obtained using a real test case of eight million grid points

I .

14
- _-- -_ -~ -

N Lopez-Benitez, M J Djomehri, and R Biswas

16 I

Number of Processors

FIG. 6.3. Speedups for STF-based heuristics o n synthetic T G

- LTF

16 32 48 64 80 96 112
Number of Processors

FIG. 6.4. Speedups for LTF-based heuristics on synthetic T G

distributed among 41 zones. The plots in Figs. 6.5 and 6.6 present detailed com-
parisons of computation and communication times per processor as predicted by the
LTF-MFTACC assignment heuristic and those actually computed by OVERFLOW-
D using LTF-MFT-ACC on an SGI Origin3000, for 16 and 32 processors. For the

_______..- _______~_____L___

Task Assignment Heuristics for CFD 15

-8- MeasuredIOVERFLOW-D
- -0- - Predicted/LTF-MRJCC
- -0- - Measured/OVERFLOW-D

u

Processor ID

F l G . 6.5. Computation and communication times per processor for 16 processors o n TG ob-
tained f m m real test case

'$,,,

a L \ -

m Q - - PredictedLTF-MFT-ACC
--e-- MeasuredDVERFLOW-D

F - a- - PredictedLTF-MFT-ACC
- -0- - MeasuredOVERFLOW-D c

-008
1 -

0 -

- 002 -2 -
-3i' ; ' ;I 1; ' 16 ' ;o ;4 ' ;* $20

Processor ID

FIG. 6.6. Computation and communication times per processor f o r 32 processors o n TG ob-
tained from real test case

sake of clarity, plots of computation and communication times are shown at different
scales indicated by the left and right vertical axes, respectively.

The predicted computation times closely match the measured data for both
n = 16 and n = 32. The predicted communication times are slightly off, espe-
cially for certain processors in the n = 32 case. These mismatches are primarily due

to the assumptions in the task assignment heuristic. For example, LTFMFTACC
assumes certain values for network latency and bandwidth that are then used to cal-
culate interprocessor communication costs. These parameters are estimated from the
16-processor run, which explains the bigger discrepancy for n = 32. However, these
parameters are not constants but change dynamically at run time depending on mes-
sage size and interconnect topology, features that are not modeled by our assignment
heuristics. The computation time per grid point, on the other hand, is relatively
accurate and uniform across processors for a tightly coupled parallel platform such
as the Origin3000. As a result, the predicted computation times match better with
a.ctiial data.

For applications running on small numbers of processors, such as the ones shown
in Figs. 6.5 and 6.6, the communication cost is only a small fraction (less than 2%)
of the computation time. The predicted total execution time is therefore hardly
affected by the error in estimating the communication time, and matches well with
the measured data. Also, the larger spread in computation times for n = 32 reflects
the general difficulty with load balancing as the number of zones approaches the
number of processors. Results using larger test cases and more processors can be
found in [5].

TABLE 6.1
Comparison of various task assignment heuristics for the real TG on 16 processors

Heuristic I E (Eq. 4.2) E+ (Eq. 4.5) IT (Eq. 4.6) LIF (Eq.4.7)
STF 7.464 7.553 3.687 0.729
STF-MFT
STF-LIT
STF-MFT-CC
STFMFT-ACC
LTF
LTF-MFT
LTF-LIT
LTF-MFT -C C

7.464
7.464
7.464
7.464
7.464
5.933
5.933
5.933

7.553
7.553
7.550
7.553
7.559
6.006
6.013
6.015

3.687
3.687
3.684
3.687
3.696
1.190
1.205
1.205

0.729
0.729
0.729
0.729
0.728
0.917
0.916
0.915

LTFMFTACC I 5.933 6.011 1.193 0.916 I

Finally, Table 6.1 lists results obtained with all the task assignment heuristics
using the real TG on 16 processors of an Origin3000. Observe that except for the
basic LTF heuristic, all the other LTF-based strategies are significantly better than
the STF-based schemes. This is expected because the largest tasks are allocated first
in the LTF heuristics. Incorporating the communication cost model has very little
effect in this case since the communication times are negligible compared to the total
execution times.

7. Discussion and Conclusions. In this paper, we first presented a task graph
(TG) model to represent a single step of multi-block overset grid computational fluid
dynamics (CFD) applications. The nodes of the T G correspond to the individual
grids, while an edge between two nodes indicate overlapping grids. We then described
a set of task assignment heuristics tailored to meet the load balance requirements
of this class of CFD problems on high performance parallel and distributed systems.
The heuristics were derived by first considering two basic criteria to assign tasks to
processors: smallest task first (STF) and largest task first (LTF). These heuristics
were then systematically enhanced by integrating the status of the processing units in

Task Assignment Heuristics for CFD 17

terms of their minimum finish times or largest idle times. Finally, the heuristics were
modified in a way that interprocessor communication costs would reflect the type of
network being used. A synthetic TG containing 128 grids and 16 million grid points
was used t o study and compare the behavior of all the assignment schemes. A TG
obtained from a real test case with eight million grid points and 41 grids was also
analyzed and compared with measured data.

The work reported in this paper is targeted to CFD users and intended for even-
tual development of dynamic assignment schemes with minimum overhead. Data
exchanges are currently assumed to have uniform cost; however, a realistic prediction
of communication must take into account the variety and location of the computing re-
sources. Fkture enhancements will incliide a. user-friendly iterative prncedirre t n
scientists and engineers achieve optimal scalability across available resources. While
the emphasis of this work is performance prediction, suitable partitioning schemes
such as MeTiS [ll] can be used to provide an initial grid partition.

~~ __---

REFERENCES

[l] F. Baccelli and A. Liu. On the execution of parallel programs on multiprocessor systems - a
queueing theory approach. Journal of the ACM, 37(2):373-414, April 1990.

[2] G. Balbo, S. Donatelli, and G . Franceschinis. Understanding parallel program behavior through
petri net models. Journal of Parallel and Distributed Computing, 15(3):171-187, July 1992.

[3] P. G. Buning, D. C. Jespersen, T. H. Pulliam, W. M. Chan, J. P. Slotnick amd S. E. Krist,
and K. J. Renze. Overflow userk manual, version 1.8g. Technical report, NASA Langley
Research Center, Hampton, VA, 1999.

[4] G. Chiola and G. Ciaccio. Lightweight messaging systems. In R. Buyya, editor, High Per-
formance Cluster Computing: Architectures and Systems, pages 246-268. Prentice Hall,
Upper Saddle River, NJ, 1999.

[5] M. J. Djomehri, R. Biswas, and N. Lopez-Benitez. Load balancing strategies for multi-block
overset grid applications. In Proc. 18th International Conference on Computers and Their
Applications, pages 373-378, Honolulu, HI, March 2003.

[6] M. J. Djomehri, R. Biswas, R. F. Van der Wijngaart, and M. Yarrow. Parallel and distributed
computational fluid dynamics: Experimental results and challenges. In Proc. 7th Interna-
tional Conference on High Performance Computing, volume LNCS 1970, pages 183-193,
Bangalore, India, December 2000.

[7] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. Journal of
Supercomputer Applications and High Performance Computing, 11(2):115-128, Summer
1997.

[8] I. Foster and C. Kesselman. The Globus toolkit. In I. Foster and C. Kesselman, Gitors, The
Grid: Blueprint for a New Computing Infrastructure, pages 259-278. Morgan Kaufmann,
San Francisco, CA, 1999.

[9] W. E. Johnston, D. Gannon, and B. Nitzberg. Grids as production computing environments:
The engineering aspects of NASA’s Information Power Grid. In Proc. 8th International
Symposium on High Performance Distributed Computing, pages 197-204, Redondo Beach,
CA, August 1999.

[lo] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J . W. Thatcher,
editors, Complexity of Computer Computations, pages 85-103. Plenum, New York, NY,
1972.

[ll] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. Technical Report 95-035, Dept. of Computer Science, University of Minnesota,
Minneapolis, MN, 1995.

[12] N. Lopez-Benitez. Petri-net based performance evaluation of distributed homogeneous task
systems. IEEE Transactions on Reliability, 49(2):188-198, June 2000.

[13] N. Lopez-Benitez and J.-Y. Hyon. Simulation of task graph systems in heterogeneous computing
environments. In Proc. 8th Heterogeneous Computing Workshop, pages 112-124, San Juan,
Puerto Rico, April 1999.

[14] V. W. Mak and S. F. Lundstrom. Predicting performance of parallel computations. IEEE
Transactions on Parallel and Distributed Systems, 1(3):257-270, July 1990.

[15] P. Markenscoff and Y. Y. Li. Scheduling a computational DAG on a parallel system with

18 N. Lope*Benitez, M. J. Djomehri, and R. Biswas

.. ~ .~ ~

communication delays and replication of node execution. In Proc. 7th International Parallel
Processing Symposium, pages 113-117, Newport Beach, CA, April 1993.

[16] R. Meakin. On adaptive refinement and overset structured grids. In Proc. 13th AIAA Compu-
tational Fluid Dynamics Conference; Paper number 97-1858, Snowmass, CO, June 1997.

[17] R. Meakin and A. M. Wissink. Unsteady aerodynamic simulation of static and moving bodies
using scalable computers. In Proc. 14th AIAA Computational Fluid Dynamics Conference,
Paper number 99-3302, Norfolk, VA, 1999.

[18] D. A. Menasce, S. C. S. Porto, and S. K. Tripathi. Static heuristic processor assignment in
heterogeneous multiprocessors. International Journal of High Speed Computing, 6(1): 115-
137, March 1995.

[19] D. A. Menasce, D. Saha, S. C. S. Porto, V. Almeida, and S. K. Tripathi. Static and dynamic
processor scheduling disciplines in heterogeneous parallel architectures. Journal of Parallel
and Distributed Computing, 28(1):1-18, July 1995.

LLV] *L. n. L)aLlLlGjl allu I,. a. I * I Y r A l I . I ~IIUI111O.I.LG 0.l.U rG;l.a"l,*"y a * r l a J J I D UD"'6 U . I G L . Y G U -yL.LLL

graphs. IEEE Tmnsactions on Software Engineering, 13(10):1105-1114, October 1987.
(211 R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability Analysis of Computer

Systems. Kluwer, Boston, MA, 1996.
[22] K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high performance scientific

simulations. In J. Dongarra et al., editor, CRPC Parallel Computing Handbook. Morgan
Kaufmann, San Francisco, CA, 2000.

[23] J. L. Steger, F. C. Dougherty, and J. A. Benek. A Chimera grid scheme. In K. N. Ghia and
U. Ghia, editors, ASME FED-5. 1983.

[24] A. Thomasian and P. F. Bay. Analytic queueing network models for parallel processing of task
systems. IEEE Transactions on Computers, 35(12):1045-1054, December 1986.

'On1 n & c."L -.-J T I c -.:..-.I: r,"-c ^_I^____ - - - -1 --,:-L:I:L-. ..-I-.. =:---*-A 1:-

